skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weibe, E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. rior research has shown that digital games can enhance STEM education by providing learners with immersive and authentic scientific experiences. However, optimizing the learning outcomes of students engaged in game-based environments requires aligning the game design with diverse student needs. Therefore, an in-depth understanding of player behavior is crucial for identifying students who need additional support or modifications to the game design. This study applies an Ordered Network Analysis (ONA)—a specific kind of Epistemic Network Analysis (ENA)—to examine the game trace log data of student interactions, to gain insights into how learning gains relate to the different ways that students move through an open-ended virtual world for learning microbiology. Our findings reveal that differences between students with high and low learning gains are mediated by their prior knowledge. Specifically, level of prior knowledge is related to behaviors that resemble wheel-spinning, which warrant the development of future interventions. Results also have implications for discovery with modeling approaches and for enhancing in-game support for learners and improving game design. 
    more » « less
  2. Prior research has shown that digital games can enhance STEM education by providing learners with immersive and authentic scientific experiences. However, optimizing the learning outcomes of students engaged in game-based environments requires aligning the game design with diverse student needs. Therefore, an in-depth understanding of player behavior is crucial for identifying students who need additional support or modifications to the game design. This study applies an Ordered Network Analysis (ONA)—a specific kind of Epistemic Network Analysis (ENA)—to examine the game trace log data of student interactions, to gain insights into how learning gains relate to the different ways that students move through an open-ended virtual world for learning microbiology. Our findings reveal that differences between students with high and low learning gains are mediated by their prior knowledge. Specifically, level of prior knowledge is related to behaviors that resemble wheel-spinning, which warrant the development of future interventions. Results also have implications for discovery with modeling approaches and for enhancing in-game support for learners and improving game design. 
    more » « less